首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34542篇
  免费   3010篇
  国内免费   980篇
  2023年   488篇
  2022年   464篇
  2021年   1075篇
  2020年   1335篇
  2019年   1694篇
  2018年   1434篇
  2017年   970篇
  2016年   953篇
  2015年   1284篇
  2014年   2144篇
  2013年   2286篇
  2012年   1335篇
  2011年   1765篇
  2010年   1266篇
  2009年   1607篇
  2008年   1704篇
  2007年   1669篇
  2006年   1629篇
  2005年   1400篇
  2004年   1217篇
  2003年   1030篇
  2002年   882篇
  2001年   644篇
  2000年   596篇
  1999年   421篇
  1998年   429篇
  1997年   414篇
  1996年   459篇
  1995年   504篇
  1994年   488篇
  1993年   434篇
  1992年   451篇
  1991年   380篇
  1990年   376篇
  1989年   332篇
  1988年   287篇
  1987年   289篇
  1986年   228篇
  1985年   282篇
  1984年   268篇
  1983年   140篇
  1982年   240篇
  1981年   197篇
  1980年   181篇
  1979年   175篇
  1978年   116篇
  1977年   116篇
  1976年   107篇
  1973年   81篇
  1972年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Defect state passivation and conductivity of materials are always in opposition; thus, it is unlikely for one material to possess both excellent carrier transport and defect state passivation simultaneously. As a result, the use of partial passivation and local contact strategies are required for silicon solar cells, which leads to fabrication processes with technical complexities. Thus, one material that possesses both a good passivation and conductivity is highly desirable in silicon photovoltaic (PV) cells. In this work, a passivation‐conductivity phase‐like diagram is presented and a conductive‐passivating‐carrier‐selective contact is achieved using PEDOT:Nafion composite thin films. A power conversion efficiency of 18.8% is reported for an industrial multicrystalline silicon solar cell with a back PEDOT:Nafion contact, demonstrating a solution‐processed organic passivating contact concept. This concept has the potential advantages of omitting the use of conventional dielectric passivation materials deposited by costly high‐vacuum equipment, energy‐intensive high‐temperature processes, and complex laser opening steps. This work also contributes an effective back‐surface field scheme and a new hole‐selective contact for p‐type and n‐type silicon solar cells, respectively, both for research purposes and as a low‐cost surface engineering strategy for future Si‐based PV technologies.  相似文献   
992.
Microfluidic technologies are highly adept at generating controllable compositional gradients in fluids, a feature that has accelerated the understanding of the importance of chemical gradients in biological processes. That said, the development of versatile methods to generate controllable compositional gradients in the solid‐state has been far more elusive. The ability to produce such gradients would provide access to extensive compositional libraries, thus enabling the high‐throughput exploration of the parametric landscape of functional solids and devices in a resource‐, time‐, and cost‐efficient manner. Herein, the synergic integration of microfluidic technologies is reported with blade coating to enable the controlled formation of compositional lateral gradients in solution. Subsequently, the transformation of liquid‐based compositional gradients into solid‐state thin films using this method is demonstrated. To demonstrate efficacy of the approach, microfluidic‐assisted blade coating is used to optimize blending ratios in organic solar cells. Importantly, this novel technology can be easily extended to other solution processable systems that require the formation of solid‐state compositional lateral gradients.  相似文献   
993.
Sequential deposition has great potential to achieve high performance in organic solar cells due to the resulting well‐controlled vertical phase separation. In this work, double bulk heterojunction organic solar cells are fabricated by sequential‐blade cast in ambient conditions. Probed by the in situ grazing incidence X‐ray diffraction and in situ UV–vis absorption measurements, the seq‐blade system exhibits a different tendency from each of the binary films during the film formation process. Due to the extensive aggregation of FOIC, the binary PBDB‐T:FOIC film displays a strong and large phase separation, resulting in low current density (Jsc) and unsatisfactory power conversion efficiency. In the seq‐blade cast system, the bottom layer PBDB‐T:IT‐M produces many crystal nuclei for the top layer PBDB‐T:FOIC, so the PBDB‐T molecules are able to crystallize easily and quickly. Balanced crystallization kinetics between polymer and small molecule and an ideal percolation network in the film are observed. In addition, the balanced crystallization kinetics are favorable toward realizing lower recombination loss through charge transport processes.  相似文献   
994.
There has been considerable progress over the last decade in development of the perovskite solar cells (PSCs), with reported performances now surpassing 25.2% power conversion efficiency. Both long‐term stability and component costs of PSCs remain to be addressed by the research community, using hole transporting materials (HTMs) such as 2,2′,7,7′‐tetrakis(N,N′‐di‐pmethoxyphenylamino)‐9,9′‐spirbiuorene(Spiro‐OMeTAD) and poly[bis(4‐phenyl)(2,4,6‐trimethylphenyl)amine] (PTAA). HTMs are essential for high‐performance PSC devices. Although effective, these materials require a relatively high degree of doping with additives to improve charge mobility and interlayer/substrate compatibility, introducing doping‐induced stability issues with these HTMs, and further, additional costs and experimental complexity associated with using these doped materials. This article reviews dopant‐free organic HTMs for PSCs, outlining reports of structures with promising properties toward achieving low‐cost, effective, and scalable materials for devices with long‐term stability. It summarizes recent literature reports on non‐doped, alternative, and more stable HTMs used in PSCs as essential components for high‐efficiency cells, categorizing HTMs as reported for different PSC architectures in addition to use of dopant‐free small molecular and polymeric HTMs. Finally, an outlook and critical assessment of dopant‐free organic HTMs toward commercial application and insight into the development of stable PSC devices is provided.  相似文献   
995.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   
996.
《Reproductive biology》2020,20(3):357-364
Methamidophos (MET) is a pesticide that has toxic properties, including effects on fertility. This study aimed to assess the joint action of treatment time and exposure to methamidophos on the male reproductive system. MET was orally administered to adult male Swiss mice at a dose of 0.004 mg.kg−1 for 15 and 50 consecutive days. The following parameters were evaluated: weight of reproductive organs, spermatogenesis, sperm and Sertoli cell count, daily sperm production and sperm transit time. Short-term exposure to methamidophos induced a decrease in epididymal weight. The frequency of stages V–VI of spermatogenesis increased and the frequency of stage IX decreased. In the epididymis, sperm transit time (caput/corpus) was reduced and the relative sperm number (cauda) increased. Long-term exposure induced an increase in the frequencies of stages I–IV and V-VI and decreased the stages VII-VIII and IX. The number of Sertoli cells with evident nucleoli was reduced in both exposures. These results confirm the reproductive toxicity of MET.  相似文献   
997.
《Reproductive biology》2020,20(1):88-96
Small VCP-interacting protein (SVIP) is a 9-kDa protein that is composed of 76 amino acids, and it plays a role in the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Recent studies have shown that SVIP is an androgen-responsive protein and its expression is regulated by androgens. Because no data are available regarding the cellular localization and expression of SVIP in the mouse testis, where androgens are highly expressed, immunohistochemistry and western blotting were performed. In the fetal testis, we found that moderate but consistent staining of SVIP is present in the cytoplasm of Leydig cells. In prepubertal and adult life, SVIP remains present in Leydig cells as well as in the cytoplasm of some peritubular and Sertoli cells. From postnatal day 15 onward, SVIP is strongly expressed in the cytoplasm of Leydig cells.Furthermore, TM3, MA-10 Leydig and Sertoli cell lines were also used to evaluate the expression of SVIP. To identify the interacting partners, such as steroidogenic acute regulatory (STAR) protein, colocalization studies were performed by fluorescence microscopy, showing that STAR colocalized with SVIP in the adult mouse testis. The expression changes of STAR were studied by using SVIP siRNAs in Leydig cell line cultures. Depletion of SVIP resulted in decreased expression of STAR. Additionally, the number and size of lipid droplets were significantly increased in SVIP-depleted Leydig cells. Taken together, our data identify SVIP as a marker of Leydig cell lineage and as a regulator of STAR protein expression and lipid droplet status in Leydig cells.  相似文献   
998.
当前因SARS-CoV-2感染而引起的2019新型冠状病毒肺炎(COVID-19)肆虐全球,严重危害人类健康。SARS-CoV-2感染性强,危重症患者死亡率高,尽管各种各样的治疗正在进行临床试验,但目前尚无有效的治疗方法。间充质干细胞(mesenchymal stem cell,MSC)在临床前试验中对多种疾病有良好的治疗效果,因而受到了广泛地关注。MSC可能利用分化潜能诱导分化成功能性肺样细胞、免疫调节与免疫细胞互作、抑制炎症来降低促炎细胞因子分泌、迁移和归巢靶向损伤肺部、抗病毒作用来减少肺上皮细胞中的病毒复制、产生细胞外囊泡来修复受损的组织,进而使COVID-19患者肺功能逐渐恢复正常,缓解并达到治疗COVID-19的目的。综合讨论了COVID-19的基本特征和当前主要治疗手段,同时总结了MSC在COVID-19中的临床研究和当前面临的挑战,探讨了MSC治疗COVID-19的应用前景,为MSC在COVID-19中的治疗提供了理论基础和现实依据。  相似文献   
999.
糖尿病是各种因素导致的高血糖慢性代谢疾病,已发展成为流行疾病之一。化学抗糖药虽能控制血糖水平,延缓病程进展,但需长期服用;胰岛移植能从根本上治愈糖尿病,但胰岛来源不足,且需终生应用免疫抑制剂,故并没有得到广泛应用;干细胞是一类能够自我复制的细胞,具有多向分化潜能和旁分泌特性,近年来的研究证明,干细胞在糖尿病治疗方面有着积极的效果,被认为是有效治疗糖尿病的理想细胞类型。因此,就干细胞治疗糖尿病的分子机制和临床研究现状进行简要阐述。  相似文献   
1000.
成纤维细胞生长因子5(fibroblast growth factor 5,FGF5)是成纤维细胞生长因子家族(FGFs)的成员之一,在哺乳动物毛囊,神经系统,睾丸等多个部位及胚胎发育过程中均有表达.研究发现,FGF5具有广泛的生物学活性,如作为毛发生长重要的调节因子其编码基因突变将导致毛发异常生长,作为丝裂原在干细胞增殖,血管生成和肢体肌发育等方面发挥重要作用,以及在高血压,肿瘤等方面具有重要的生物学功能.目前,FGF5在多种疾病中的功能和作用机制尚需进一步深入研究,但其在毛发生长,干细胞增殖及在心血管疾病等方面的生物学作用具有重大的意义和临床应用价值.总结了近些年FGF5的研究进展,系统阐述了FGF5在毛发生长,干细胞增殖分化,心血管疾病及癌症等方面的相关作用机制,为进一步深入研究FGF5在疾病治疗中的作用和开发利用提供参考.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号